Indian Statistical Institute, Bangalore B. Math.(Hons.) III Year, Second Semester Mid-Sem Examination Combinatorics and Graph Theory March 1, 2010 Instructor: N.S.N.Sastry

Time: 3 hours

Maximum Marks 100

- 1. Define a Hadamard design. Show that a Hadamard design admits a unique extension. [10]
- 2. Define a t- transitive permutation group. Find the largest integer t for which the alternating group A_n acting on $\{1, \dots, n\}$ is t- transitive. [10]
- 3. Define a projective plane of order n. Show that a projective plane of order 2 exists and is unique. [10]
- 4. For $t \in \{0, 1, \dots, n-1\}$, let $\mathbb{P}_t^n(q)$ denote the set of all subspaces of \mathbb{F}_q^{n+1} of dimension t+1.

a) Show that $X = (\mathbb{P}_0^n(q), \mathbb{P}_{n-1}^n(q))$ is a symmetric design. Calculate its parameters

b) If X as in (a) is an extendable design, then show that n = 2 and $q \in \{2, 4\}$.

[10+12]

- 5. Let G be the group of all \mathbb{F}_q -vector space automorphisms of \mathbb{F}_q^{n+1} . Consider the action of G on $\mathbb{P}_t^n(q)$ induced by the natural action of G on \mathbb{F}_q^{n+1} ($0 \le t \le h$). Determine the number of G- orbits for the action of G on $\mathbb{P}_t^n(q) \times \mathbb{P}_t^n(q)$. [12]
- 6. If $\mathbb{D} = (X, \mathbb{B})$ is a $t (v, k, \lambda)$ design with $|\mathbb{B}| > 1$ and t > 2, then show that $|X| < |\mathbb{B}|$.

[8]

- 7. Show that every nontrivial automorphism of a $t (v, k, \lambda)$ design, $t \ge 2$ and $k > \lambda$, moves at least one block. [8]
- 8. Let $\mathbb{D} = (X, \mathbb{B})$ be an extension of a symmetric $2 (v, k, \lambda)$ design. Let $B_0 \in \mathbb{B}$ and \mathbb{B}^1 be the set of all elements of \mathbb{B} which are disjoint from B_0 . Show that $(X \setminus B_0, \mathbb{B}^1)$ is a 2-design. Calculate its parameters.

[10]

9. For each positive integer n and prime p, show that there exists a polynomial $f(x) \in \mathbb{F}_p[X]$ of degree n which is irreducible over \mathbb{F}_p . Deduce the existance of a field of order P^n for each prime p and each integer n > 0. [10]

-----end----